Bringing Design Technology and Architecture Closer Together: What Open Source Might Enable

Andrew B. Kahng
Depts. of CSE and ECE
UC San Diego
abk@ucsd.edu
https://vlsicad.ucsd.edu
Open Source Design Technology
Design Crises: Cost, Expertise, Unpredictability

- Design cost: not scaling
- Design, process roadmaps not coupled
- Figure: Andreas Olofsson, DARPA, ISPD-2018 keynote

- Quality: also not scaling
- Design Capability Gap
- Available density: 2x/node
- Realizable density: 1.6x/node
- Figure: UCSD / 2013 ITRS
Design is Too Difficult!

- Tools and flows have steadily increased in complexity
 - Modern “Place and Route” tool: 10000+ commands/options

- Hard to design with latest tools in latest technologies
 - Even harder to predict design quality, schedule
 - Expert users are required
 - Increased cost and risk are not good for industry!

- Still have “CAD” mindset more than “DA” mindset
 - Again: assumes expert users

How do we escape this “local minimum”?
U.S. DARPA IDEA: No-Humans, 24-Hours

IDEA will create a no-human-in-the-loop hardware compiler for translating source code to layouts of System-On-Chips, System-In-Packages, and Printed Circuit Boards in less than 24 hours

A. Olofsson, DARPA ISPD-2018 keynote

• Part of DARPA Electronics Resurgence Initiative
• Traditional EDA focus: ultimate quality
• New IDEA focus: ultimate ease of use
• No human in the loop, 24-hour turnaround time
 = “design-based equivalent scaling”
• Overarching goal: designer access to silicon
OpenROAD’s Foundation Technologies

24 hours, no humans – no PPA loss

Mindsets

- Achieve **predictability** from the user’s viewpoint
- Use cloud/parallel to recover solution **quality**
- Focus on reducing **time and effort = schedule, cost**

“**The Last Scaling Levers**: Quality, Schedule, Cost

- Quality
- Schedule
- Cost
The OpenROAD Project

- Initial target: digital IC flow “RTL to GDS”
 - Inputs: .v, .sdc, .lib, .lef
 - .def, .spef in point tools
 - config files, pre-characterizations required
 - Outputs: routed .def, timing/power reports

- Open source
- No-human-in-loop
 - Limited “knobs”, restricted field of use
 - Replace intelligent humans (partition, floorplan, …)

- Alpha release: July 2019
- v1.0 release: June 2020

See: https://theopenroadproject.org/publications/
https://github.com/The-OpenROAD-Project
Why Open Source? (details from DAC-2019 panel)

- Clarity
 - Leading edge becomes visible and well-defined
 - *Today*: EDA license terms include “no benchmarking”

- Better science
 - Advances are verifiable: no more “irreproducible results”
 - *Today*: Scientific research in EDA is constrained to be irreproducible!
 - E.g., cannot publish the Tcl scripts for commercial EDA tools that my students use

- Avoid reinventing wheels
 - Field advances more rapidly
 - *Today*: Students waste months trying to reconstruct papers
 - *Today*: Students waste months reimplementing basic algorithms, engines
OpenROAD Outreach: Workshops, Contests…

Open Source Community Contribution Awards (Nominations Open)

DAC'19 Birds of a Feather

WOSET 2019

ICCAD-2019 Contest C co-sponsorship

DAC'18 Birds of a Feather

WOSET 2018

EDA Futures Workshop
Open-Source EDA Isn’t New

• From Berkeley/MIT tools to The Bookshelf to …

DATC RDF Flow

- IEEE CEDA Design Automation Technical Committee
- Construct an academic reference design flow based on contest results for facilitating EDA research
- Run the flow from logic synthesis to detailed routing, and create final detailed-routed DEF
- Link to 2019 ISPD detailed routing contest and extend to cloud

Iris Jiang, DAC-2019 Open-Source Academic EDA Tools “Birds-of-a-Feather” meeting (wiki)
Open-Source EDA Tools Census

Adapted from Prof. Tsung-Wei Huang, DAC-2019 Session 37 talk

IDEA/POSH program launched

New Release Total

66 7 8 9 10 12 13 16 18 23 24 25 29 31 32 34 36 37 39 43 49 57 81 91

New Release
Total

0 10 20 30 40 50 60 70 80 90 100

Adapted from Prof. Tsung-Wei Huang, DAC-2019 Session 37 talk
Tool Demographics

- Digital: 81%
- FPGA: 4%
- Analog: 13%
- Digital / Analog: 2%

Adapted from Prof. Tsung-Wei Huang, DAC-2019 Session 37 talk
Warning: 40 Years of Industry Learning Curve

• Commercial EDA has gone up a learning curve regarding how to architect the complex interactions between tools in the Synthesis, Place and Route tool chain

• 1980’s - focus was on point tools connected by files

• 1990’s – pervasive timing driven steps required tight connection to timing

• 2000’s – tightly coupled algorithms on a shared incremental substrate

• 2010’s – Advanced node effects, parallel processing, hyper-optimization
Incremental EDA Architecture: Shared Netlist

A. B. Kahng, 190623 ISCA Visioning

Tom Spyrou, DAC-2019 Open-Source Academic EDA Tools “Birds-of-a-Feather” meeting (wiki)
Warning: 40 Years of Industry Learning Curve

- Commercial EDA has gone up a learning curve regarding how to architect the complex interactions between tools in the Synthesis, Place and Route tool chain.
- 1980’s - focus was on point tools connected by files.
- 1990’s – pervasive timing driven steps required tight connection to timing.
- 2000’s – tightly coupled algorithms on a shared incremental substrate.
- 2010’s – Advanced node effects, parallel processing, hyper-optimization.
- OpenROAD Alpha will be a “1980’s” file-based flow.
- OpenROAD v1.0 production release targets a “2000’s” tightly coupled shared incremental architecture similar to commercial production tools.
 - Implies a first-ever shared DB layer in permissive open source...
Bringing Architecture Closer
Food for Thought: Our Two Worlds …

• “EDA / IC design world”
 • System-on-chip engineering teams have 1000s of headcount
 • Driving commercial EDA tools is difficult, w/huge PPA swings
 • New technology node can bring very modest PPA wins (note: pick one or two only)
 • Hard to know value of (device, material, integration) technology in advance
 • EDA VP R&D: 0.5% clock power reduction would be a home run in a competitive benchmark

• “Architecture world”
 • 40%, 25x, etc. improvements are frequently achieved
 • A recent draft on multi-die system integration: 50% iso-cost performance improvement, 30% iso-performance cost improvement

• How is this possible?
How to Estimate… \((\text{power, reliability, \ldots})\)?

- Tech files, signoff criteria, corners
- AVS
- Slack
- P&R + Optimization
- Timing/Noise
- Sim Results (Dyn.) Activity Factor (Static)
- IR Drop Map
- Timing / Glitches
- Power Analysis
- Power Trace
- Thermal Analysis
- Temp Map
- MTTF & Aging
- Task Mapping/Migration/(DVFS)
- Reliability Report
- Function I Sim
- Sim vectors Benchmark RTL
(across analysis loops, scales, layers, …)?

Design, EDA

- P&R + Optimization
- Timing/Noise
- Slack
- AVS

Tech files, signoff criteria, corners

STA-IR loop
- Timing / Glitches
- IR Drop Map

Workload-Thermal loop
- Power Trace
- Temp Map
- Task Mapping/Migration/Rev

STA-Thermal loop
- Reliability Report

STA-Reliability loop
- MTTF & Aging

Power Analysis

Sim Results
(Static)

Architecture

Sim vectors
Benchmark RTL

Architecture
Not an Architect, Just a Fan…

- **ORION 2.0/3.0:**
 - Network on Chip Power and Area Model
 - ORION 2.0 (download)
 - ORION 3.0 (website)
- **CACTI-IO:**
 - Power, Area and Timing Models for The IO and PHY of Off-Chip Memory Interfaces (report)
- **CACTI 7:**
 - New Tools for Interconnect Exploration in Innovative Off-Chip Memories (website)
- **ITRS System Drivers, System Integration roadmaps**
- **Collaborations with architects**
 - …
Closer: Design-Tech Co-Optimization (DTCO)

Design Technology

- Architecture Design
- High Level Synthesis
- RTL
- Logic Synthesis
- Gate Netlist
- Extraction, Timing, Physical Verification
- Reading
- GDSII
- Manufacturing

Manufacturing Technology

- Design-Aware Manufacturing
- Manufacturing-Aware Design
- Performance & Power Benefit
- GAAFET
- Planar FET
- FinFET

Design for Manufacturability (DFM)

Key Design Types

- RV12 RISC-V
- GPU Core

Key IPs/ Components

- NAND2
- 6T SRAM
- D Flip-Flop

A. B. Kahng, 190623 ISCA Visioning
Closer: DTCO \rightarrow Pathfinding

Applications, Markets

Internet Wave
Internet Boom, Cell Phone

Digital Wave
PC

Analog Wave
TV, VCR

Portability & Connectivity Wave
Wireless device

IoT/Edge and Cloud?
DL?
Vision/ ADAS?
VR/AR/MR?

Systems
Quantum Processor
Package On Package D2W

D2D Monolithic
Neuromorphic computing

Design Technology

Manufacturing Technology

Design for Manufacturing (DFM)

Design-Aware Manufacturing

Manufacturing-Aware Design

Key Design Type

RV12 RISC-V GPU Core

Key IPs/ Components

NAND2, 6T SRAM, D Flip-Flop

Loop back is missing!!!
What “Together” Might Enable
Perhaps …

• … ML-powered, self-driving EDA tools and flows?
 • Restores access to hardware implementation!
 • Starts with collaborative generation of data
 • Unlocked by \{designs\} + \{tools\} + \{technology\}
 = Architects/designers + EDA researchers

• … Better oracles and constructive proofs of achievable PPAC (= DSE) at the absolute limits of a given technology and enablement?
 • “40%” or “25x” can be more rigorously supported
 • Maybe 50% or 35x could have been found!
 • Unlocked by ML in and around (open-source?) IC design tools and flows

• … What else?
Summary

Bringing Design Technology and Architecture Closer Together: What Open Source Might Enable

Open-Source Design Technology
+ Bringing Architecture Closer
+ What “Together” Might Enable

= Food for Thought! 😊
THANK YOU!

Research supported by U.S. National Science Foundation, U.S. DARPA, Samsung, Qualcomm, NXP Semiconductors, Mentor Graphics, and the C-DEN Center.

Thanks to Tom Spyrou, Iris Jiang, Tsung-Wei Huang and Desmond Liu for slide materials.

A few links:
- Presentations linked under News at https://vlsicad.ucsd.edu/
- https://theopenroadproject.org/ and https://theopenroadproject.org/outreach/
- https://github.com/The-OpenROAD-Project/
- Machine learning “in and around IC design tools”:
 - https://vlsicad.ucsd.edu/Publications/Conferences/356/c356.pdf
 - https://vlsicad.ucsd.edu/Publications/Conferences/360/c360.pdf
 - Etc.